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Abstract. We discuss the viscosity damping effect on capillary waves in a binary-liquid system,
using the linearized Navier—Stokes equation. The damping correction for the dispersion relation
depends on the wave vectkras well as the interfacial tension. The calculaiedependence

of damping is characterized by a critical capillary-wave-number valyevhich separates the
regions of weak and strong damping. The surface and interfacial roughnesses of a binary
liquid system with large liquid depths are calculated and compared to experiments. Although
the analysis has been restricted to the classical, macroscopic level, we obtain a noticeable
modification from earlier hydrodynamic results for capillary wave damping and liquid—liquid
interfacial roughness.

1. Introduction

In one approach to describe the structure of a liquid surface or interface a continuous,
inhomogeneous density profile (intrinsic density profile) is investigated using the mean field
theory of van der Waals and Rayleigh [1]. Another approach, stimulated byeBaff2], is

the capillary-wave model which presumes that the finite thickness of a fluid interfacial zone
results from wavelike thermal excitations (capillary waves with wave vekjoon a flat
abrupt interface. For quantitative interpretation of the reflectivity data from liquid surfaces
and interfaces, the capillary wave theory has been extended [3, 4]. One of the modifications
focuses on the high cutoff of the capillary wave spectrum, which is often identified with

the inverse of the correlation length or the molecular size [5,6]. The molecular basis of
capillary wave dispersion and damping has been explored using statistical mechanics, by
Grant and Desai [7], but here we will focus on a macroscopic description.

We take the intrinsic density profile of a liquid surface or interface to be sharp and
characterize the interfacial zone solely by capillary waves, an approach which is justified
for immiscible liquids. Using the linearized Navier—Stokes equation we study the dynamic
properties of waves on a liquid—liquid interface in thermal equilibrium. From the wave
damping we determine a high-cutoff for capillary waves, and show that the cutoff is
essential for a quantitative description of interfacial roughness.

Although the hydrodynamic parameters, viscosity and surface/interface tension, can
be related to descriptions on the molecular level [8], we use the phenomenological,
hydrodynamic approach, assuming in particular that these parameters are independent of
k. This is justified when the viscosity is not large [9, 10], and when the wavelengths 2
are much longer than the correlation length for the fluid [11]. The bending energy [12] for
interface fluctuations is neglected, since for the small capillary wave amplitudes considered
here the interface curvatures are small.
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In spite of these classical simplifications, the dispersion relation for the interfacial waves
is complicated and usually obtained under various approximations focusing on specific
physical systems [13, 14], for instance, the neglect of air density and/or viscosity for an
air-liquid interface [7,15]. For a liquid—liquid interface, the dispersion relation corrected
for small viscous damping has been given by Hewtial [14, 16]. Following the approach
used by Levich [17] we obtain an essentially different correction for the dispersion relation
as shown below. The correction is, however, consistent with a result given by Loudon
[18], and we will show that the modification is essential for the analysis of recent interface
roughness data obtained by neutron reflection. We also derive an equation for the surface
roughness for a single viscous fluid with small damping.

2. The viscous damping of capillary waves

We start from the linearized Navier—Stokes equation

v
P = —Vp+pg+nVi 1)

for an incompressible fluid with density, velocity v, pressurep and the gravitational
accelerationg. For the small wavelike perturbations considered here, we can neglect the
non-linear termo(v - V)v in the general Navier—Stokes equation, but take into account
finite viscosityn = pv, wherev is the kinematic viscosity. For simplicity, we discuss
only the limiting case ofa binary-liquid system with large liquid depthsit has been
shown previously [19,20] that for large depths surface and interfacial roughnesses are
uncoupled, being generated independently by different modes, the surface and interfacial
mode, respectively. We will focus first on the interfacial mode, and discuss the surface
roughness in section 2.2.

2.1. Interfacial roughness of viscous fluids of large depths

2.1.1. Dispersion relation for the interfacial modeWe extend the analysis of small waves
at the air-liquid interface of a single liquid by Levich [17] to the liquid—liquid interface of
a binary-liquid system. For a binary-liquid system of large liquid depths (the criterion for
‘large depths’ iskh > 1 andkh’ > 1, whereh (k') is the depth of the bottom (top) liquid),
wavelike solutions of equation (1), for the bottom liquid, are of the form [17]

ve =Y (kA € — 1C &) ehrmend )
k

and
v, = Z(kAk e/‘z 4 |ka eIZ) ei(kx—wkz) (3)

k
with

l =ky/1—iwp/(vk?) 4)

wherewy is the frequency of the mode with the wave numbeWe use a coordinate system,
wherez = 0 defines the sharp interface ands the direction of the wave propagation along
the interface. Similarly, for the top liquid (using primed quantities),

U; = Z(”(A;( e—kz + l/C]/( e—l’z) é(kx—w;(t) (5)
k
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and
v, = Z(—kA; e 1 ikC, e7!7) dlhran (6)
k

with ' = k/1—iw/(V'k?). In equations (2), (3), (5) and (6) the velocities are
determined by two contributions: (i) the potential flow described by the terms with
amplitudesA;, A}, which correspond to the velocity potentialg: = >, A e k-
andg¢’ =Y, A, e dkx—a); (i) the rotational flow represented by a vector potential with
amplitudesCy, Cy, describing fluids of finite viscosity. The coefficiems, Ci, A, andC;,

and the dispersiony, (k) are determined by the boundary conditions at the interfaee @),
where the stress tensor and velocity must be continuous [21]:

(a) The continuity of the stress tensor in the vertical direction gives

0%¢

I

— = —_— 7

GZZ Gzz aaxz ( )
whereo,, = —p + 2ndv./dz ando.. = —p’ + 2n'9v./dz are corresponding stresses for

the bottom and top liquid at the interface, and= )", ¢ €~ s the instantaneous
displacement of an interface point with horizontal coordinatitom the mean interfacial
plane, with (¢) = 0. The pressure is expressed as= —pg¢ — pdp/ot, p' =
—p'gt — p'd¢’ /0t and the interfacial pressused?c /9x? is due to the interfacial tensian

(b) The continuity of stress tensor components involving the horizontal direction gives
oy, = oy, Whereo,, = n(dv,/dz + dv;/dx) ando,. = n'(dv,/dz + dv,/dx) are the
corresponding components for the bottom and top liquid, respectively.

(c) The continuity of vertical and horizontal velocity gives= v;.

(d) vy = vl.

Inserting the velocities (equations (2), (3), (5) and (6)) and the velocity potentials into
the four boundary equations in (a)—(d), and using the relatice d¢ /0t at the interface,
we obtain four linear homogeneous equations:

Z NijS; =0 (8)

wherei, j = 1 to 4, andS; stands forA,, Ci, A, andC, for j = 1, 2, 3, 4, respectively.
The coefficientsV;; form a 4x 4 matrix N. Then dispersion relationy (k) is obtained
from the condition dety/] = 0, which can be written

Ap

[otk = 1) + o'k = DI (o + p") (w,% - wém) — Akl pwx +i(n — n)k(k — D]

x[p'wr —i(n —nHk(k —17] =0 9)
with wg = gk +ak®/Ap and Ap = p — p/. It can be checked that foy = n° = 0 we
obtain the same resull; = wio = (Ap/(p + p'))Y?wy as for the interfacial mode of ideal
liquids. It is difficult to obtain a general solution fas,, sincel and!’ are functions of
wy (see equations (4) and following (6)), but one can see ¢hais a complex number
whose imaginary part describes the viscous damping of the capillary waves. To shed more
light on the general nature of the solutions to (9) we have converted it into a ninth-order
polynomial equation for a quantit® related tow; by D = ' + /1 — (iwy)/(vk?). Since
in converting (9) the signs of the square roots (f@nd!’) were lost, not all the solutions
to the converted equation correspond to solutions of the original equation (9). A numerical
study in a widek-range shows that for any only one solution exists, and this solution
assumes the asymptotic forms given below in the low- and high-viscosity limits.
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We discuss the dispersion relatian (k) and the interfacial roughness in these two
cases only: (Llwi| > vk? and o] > v'k?, the weak damping approximation, and (2)
lwx| <« vk? and |wy| < v'k?, the strong damping approximation.

2.1.2. Dispersion relation and interfacial roughness in the weak damping approximation.
Under the weak damping approximation the dispersion relatjadiffers from the dispersion

ww = (Ap/(p + p)Y?w for ideal liquids only by a small quantity,, and can be
approximated byw, = wiwo — iy as for a damped oscillator. Using this approximation
for wy, [ andl’ in (9), we obtain

P’/ 2vV'k? [axo
wko
(P + )PV + p'VV)

which is consistent with the expression given by Loudon [18]. The imaginary part of
gives a small correction to the real part ©f. Insertingwyo in (10) we notice that the
damping coefficieny; is not a constant for capillary waves, but increases Wwitis /4.
Equation (10) differs essentially from the expressjgn= 2[(n + ')/ (p + p')]k? often
used [14]. Moreover, when the top fluid density is set equal to zero equation (10) does not
reduce to the damping coefficiept = 2vk? [14, 15] for the air-liquid interfacial fluctuations
obtained by neglecting the density of the top fluid from the beginning, as shown below in
section 2.2.1.
Using the dispersion relation, = wyo — iyx and equation (8), we obtain the following
relations for the coefficients:

(@) C = 1(2k/ 1Ak — (/1) Cy

(b) A, = —(L+2k/1NA— 11+ 1/1)Cy

(©) Ck =i[o'k/ 1) /(o + p'l/1N] Ak

Relations (a)—(c) determine the velocities at the interface Q) as follows:

(10)

ve=(1-0

20’V ) )
Vy = U)/C = ZikAk (1 — ,0_\/17) e'(kx*(ww*lyk)t) (11)
X PNV + PNV
and
k 20’V . )
UZ = 'U; = ZkAk <1 —_ —p—ﬁ) é(kx_(wko_lyk)f)' (12)
X L pv+ p' v

This result shows: (1) The horizontal velocity at the interface (equation (11)) is
continuous (no slip), which differs significantly from that for ideal liquids where=
—v,. # 0. (2) The vertical velocity (equation (12)) is affected only slightly by the viscosity
in the weak damping region whetk/I| « 1.

The multiplying factor,A;, for the fluid velocities in (11) and (12) can be determined
from the wave energy. In thermal equilibrium the mean kinetic energy of kagave in
the system is related to the thermal enekgy" through

P 0 o [ 1
8k=—/ (|l}xk|2+|Uzk|2)dZ+—/ (lv;k|2+|vék|2)dz=—kBT (13)
2J) 2 Jo 5

wherewvy, v, vy, andv), are the velocity components of titewave in (2), (3), (5) and
(6).

Integrating (13) and using the relatiop. = 3¢;/dr at the interface, we obtain the mean
square interfacial roughness contributed by theave:
kgTE&

S L N 14
[(p + p)/Klw?, a9

(g8 ~
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We have introduced here a factor

| 2vk2 pp' V'
E=1—-m
@k (o 4 p))(p/V + p'VV)

which takes into account that for the damped oscillator a fractiere(lof thermal energy is
consumed by dissipation (and fed back into the thermal reservoir). This fraction is estimated
to be (1) /wro, the same loss fraction as for a classical damped oscillator which cannot
convert all its kinetic energy at oscillation amplitude zero to potential energy at the next
reversal point.

In the weak damping limit, (14) reduces to the result for ideal liquids?) ~
kzT/[(Ap/k)(gk + ak®/Ap)], indicating that the ideal liquid assumption is valid, since
wro > vk? and wyo > VK2, Inserting in these inequalities?, = (Ap/(p + p'))(gk +
ak®/Ap), we express the criterion for weak damping as:

o
k< Ap + pHv? ke (15)
wherev in the denominator should be replacedibyhenv < v'. Here, we have neglected
the gravity effect (which is justified except for extremely smakk 0.1 dyn cnil).

In (15), k. defines the wave number for critical damping of capillary waves at the

interface of two viscous fluids. For weak damping: < k., and for strong damping:
k > k.. The latter limit is discussed now.

2.1.3. Strong damping approximatiod (> k.). The strong damping approximation

is defined byl ~ k and!’ ~ k (or |ox] < vk? and |wx| <« V'k?). In this case,

I/k ~ 1 —iw/(2vk?) andl'/k ~ 1 — iw;/(2v'k?). Inserting these approximations into
(9), we obtain two solutions for the dispersion relatian; = 0 and a purely imaginary

wx = —iwZ(p+p")/[2k*(n+n")]. The valuew;, = 0 is formally an exact solution of (9), but

it follows from (8), (2), (3), (5) and (6) that, v" would vanish, and a finite static distortion

of the interface does not satisfy balance of forces. The remaining purely imaginary solution
for wy is overdamped, and contributes very little to the interfacial roughness. Thus, a good
approximation to roughness is achieved by integrating the expressioﬁ,ﬁprobtained
neglecting viscosity, from its minimum value,;, ~ 10-8 A~ (determined by the sample
size) not up tok,.. ~ 1 A~ (as usually suggested), but only up %o (or up tok. for

the single liquid case, discussed later in the paper). In this way, all effects of viscosity are
approximated by neglect of the highregionk > k. (or k > k).

2.1.4. Interfacial roughness of an oil-water—surfactant systeile apply (14) to the liquid—

liquid interface of an octane—water—surfactant system, which has (&)20 = 0.7 g cn?

andv’ = 0.0077 cn? s * for octane;p = 1.0 g cnT3, v = 0.01 cn? s~ for water; and a

very small interfacial tensionr = 0.1 dyn cm*1°. Using these parameters withcutoffs of

kmin ~ 1078 A=Y and ke = k. = 1.5 x 10°% A=1 (much smaller than the value obtained

from the molecular size), we obtain a much smaller interfacial roughnieds/? ~ 19 A,

than that, 90A, predicted by the standard model [22, 23]. This result is not only consistent

with our previous experimental neutron reflection data [19, 20] but also with our previous

analysis based on the potential flow assumption [19]. Now we have obtained the lower

estimate of interfacial roughness without invoking the artificial loveutoff due to slip.

The slip is an artifact of the potential flow assumption and vanishes in viscous liquids.
We have neglected all effects of the surfactant monolayer at the oil-water interface

other than reduction of interfacial tension. It has been shown in [17] that the fluctuation
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of surfactant concentration in this monolayer due to interface fluctuations gives rise to
wave damping. We assume that this effect is small when the monolayer coexists with
an abundant supply of surfactant in the solution, which tends to counteract a change of
surfactant concentration [24, 25] at the interface.

We have discussed viscous damping of interfacial roughness only for the limiting case
of infinite liquid depths. If the top film is very thin, we expect additional suppression of
interfacial roughness due to the coupling between waves at the surface and interface, as
shown previously [19, 20].

2.2. Surface roughness of a single layer of viscous fluid of large depth

In [19] and [20] we have shown that the surface roughness of a binary liquid system of
infinite depths is due solely to the surface mode, and is the same as that for a single liquid
of infinite depth. Therefore, in the following we briefly analyse the surface roughness of a
single liquid layer of density’, and show that for weak damping, we obtain the results of
[14] and [15].

2.2.1. Dispersion relation. We use again expansions (2) and (3) for wavelike solutions to
the linearized Navier—Stokes equation (1), changing to primed quantities.

These expressions have to satisfy continuity of the stress tensor at the air-liquid interface
z = 0 for the vertical and horizontal directions, implying

(wr +120'k3)% + 'k Jk) — w? =0 (16)
and
, 2ik/1)? A
Tl k12

In (16), ' = ky/1— (iwy)/ (V'k?), anda)(’)2 = gk + a'k3/p’ is the dispersion relation for an
ideal liquid of infinite depth. A general solution fay, is difficult to obtain from (16). For
simplicity, we discuss only the cases of weak and strong damping, as before.

(A) Weak damping|y| > v'k?). For weak damping we usé/ k ~ (1—i)\/wy/(2v'k?),
andw, = wy — iy{, wherew >> ¥/, to obtainy, = 2v'k? as in [14] and [15]. As expected,
the results deviate little from those for an ideal liquid.

(B) Strong damping || < v'k?). This region is defined by’ ~ k. Using the
approximation’/k ~ 1—iwy/(2v'k?), we obtain from (16) the solution, = —iwZ/(2v'k?)
satisfying the criteriorjwy| < v'k? [17].

(17)

In the regionk > k. there exists also a second solution to (16), ~ —i0.9v'k? +
(0.2iw2)/(v'k?). It is overdamped even more strongly than the first solution, and both can,
therefore, be neglected in roughness calculations. Numerical studies confirmed that these
are the only solutions in the highregion.

2.2.2. Roughness.Using the same procedure for the surface roughness as was used for
the interfacial roughness in section 2.1.2, we obtain for weak damping

2y _ kB—T (1 — ankz) 18
) = e o (16)



Capillary waves at liquid interfaces 4961

for the k contribution to mean-square roughness. Ekgr>> v'k? equation (18) reduces
to (£2) ~ kgT/[(p'/k)(wp)?], the well known result for an ideal liquid. Using? =
gk +a'k®/p', the criterion for validity of the ideal-liquid approximation can be written

k<d/(dp'v?) =k, (19)

wherek!. is the critical damping wave vector for capillary waves of a viscous flkidplays
the same role at the surface fasplays at the interface (see (15)).

2.2.3. Surface roughness of wateM/e apply (18) to a water surface, using the parameters
o =72 dyncm?, p' = 1 genr3 andv' = 001 cn? st at 20°C, and thek-cutoffs:
kmax = k. ~ 1.8 x 102 A~1 and k,,;, ~ 1078 A~ The result(¢?)¥? ~ 2.3 A agrees
with the x-ray reflectometry data [26] but is somewhat lower than the valué 3i3tained
using the standard capillary wave theory with the usual cutoffs;, ~ 0.5 A~! and
kin ~ 1078 A-1[27].

3. Summary and discussion

We have discussed the viscosity damping effect on capillary waves using the linearized
Navier—Stokes equation. The main result of this analysis is a hightoff determined
directly from thek-dependence of viscosity damping. The transition to extremely large
damping can be characterized by the critical damping wave nuibfar the interfacial
roughness (and by, for the surface roughness). The roughness contribution in the high
k region, wherek > k. (or k > k), can be neglected. When the interfacial tension

is low, as in an oil-water—surfactant system, or the fluid viscosity is large, as in melted
diblock-copolymer films [28]k. is so low that most of the capillary wave spectrum is
strongly damped, thus leading to a small interfacial roughness. This result is consistent
with an analysis based on potential flow (ideal liquids), only if in this approximation a
phenomenological low cutoff is introduced, as in [19] and [20]. (In [19] and [20], this
cutoff was physically justified by the requirement of limited horizontal slip at the interface.)

Our conclusion on the roughness of a liquid-liquid interface of low interfacial tension
disagrees with several previous studies using x-ray [22] and neutron reflectometry [23],
which have reported interfacial roughness as large as aboutAl0O0The measured
roughnesses in our neutron reflectometry experiments [19, 20] agree with the calculations
presented here. It seems possible that the wider transition regions between the fluids
observed in other studies are due mainly to the presence of a physically wider mixed
interfacial layer, rather than to large capillary wave fluctuations.

We have also shown that the damping at a liquid—liquid interface must be characterized
by the individual hydrodynamic parameters of both liquids, and cannot simply be deduced,
as has been done in some cases [23], from the single-liquid result by replacing the density
of the liquid by the difference in density and the surface tension by the interface tension.
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